NASA斯皮策望远镜发现仙女座超大质量黑洞的进食习惯
美国宇航局斯皮策太空望远镜的图像显示了为仙女座超大质量黑洞提供能量的尘埃流,揭示了这些黑洞是如何在没有明显光波动的情况下持续提供能量的。最近利用计算机模型和档案数据进行的研究支持了这一发现。
这些仙女座星系的图像使用的是美国宇航局退役的斯皮策太空望远镜的数据。上图显示了多个波长的图像,揭示了恒星、尘埃和恒星形成的区域。下图只显示了尘埃,更容易看到星系的底层结构。资料来源:NASA/JPL-Caltech
在美国国家航空航天局(NASA)退役的斯皮策太空望远镜(Spitzer Space Telescope)拍摄的图像中,数千光年长的尘埃流流向仙女座星系中心的超大质量黑洞。原来,这些尘埃流可以帮助解释质量是太阳数十亿倍的黑洞是如何饱餐一顿,却又"安静"地吃东西的。
当超大质量黑洞吞噬气体和尘埃时,这些物质在掉入黑洞之前会被加热,从而产生令人难以置信的光影效果--有时比整个星系的恒星还要亮。当物质以不同大小的团块形式被吞噬时,黑洞的亮度就会发生波动。
但是,位于银河系(地球的母星系)和仙女座(我们最近的星系邻居之一)中心的黑洞是宇宙中最安静的吞噬者之一。它们发出的微弱光线在亮度上没有明显变化,这表明它们吃的是少量但稳定的食物流,而不是大块的食物。这些食物流以螺旋的方式一点一点地接近黑洞,就像水流顺着下水道旋转一样。
今年早些时候发表的一项研究将"安静的超大质量黑洞以稳定的气体流为食"这一假设应用到了仙女座星系。作者利用计算机模型模拟了仙女座超大质量黑洞附近的气体和尘埃随着时间的推移会有怎样的表现。模拟结果表明,超大质量黑洞附近可能会形成一个小的热气体盘,并不断为其提供能量。无数的气体和尘埃流可以补充和维持这个圆盘。
但研究人员也发现,这些气流必须保持在一个特定的大小和流速范围内;否则,物质会以不规则的团块形式落入黑洞,造成更多的光波动。
这张仙女座星系中心的特写照片是由美国宇航局退役的斯皮策太空望远镜拍摄的,上面用蓝色虚线标注了两股尘埃流流向星系中心的超大质量黑洞(用紫色圆点表示)的路径。资料来源:NASA/JPL-Caltech
当作者将他们的发现与来自斯皮策和美国宇航局哈勃太空望远镜的数据进行比较时,他们发现斯皮策之前识别出的尘埃螺旋符合这些限制条件。由此,作者得出结论,这些螺旋体正在为仙女座的超大质量黑洞提供能量。
加那利群岛天体物理研究所和慕尼黑大学天文台的天体物理学家阿尔穆德纳-普列托(Almudena Prieto)是今年发表的研究报告的共同作者之一。"我们有了20年前的数据,这些数据告诉了我们一些我们最初收集这些数据时没有意识到的东西。"
斯皮策号于2003年发射升空,由美国宇航局喷气推进实验室(JPL)负责管理,它利用人眼看不见的红外光研究宇宙。不同的波长显示了仙女座的不同特征,包括较热的光源(如恒星)和较冷的光源(如尘埃)。
通过分离这些波长并单独观察尘埃,天文学家可以看到星系的"骨架"--气体凝聚和冷却的地方,有时会形成尘埃,为恒星的形成创造了条件。仙女座星系的这一景象给我们带来了一些惊喜。例如,虽然仙女座星系和银河系一样是一个螺旋星系,但它的中心是一个巨大的尘埃环,而不是环绕其中心的明显的臂。图像还显示,在环的一部分有一个二级洞,一个矮星系从那里穿过。
仙女座靠近银河系,这意味着从地球上看它比其他星系更大: 用肉眼看,仙女座的宽度大约是月球宽度的六倍(约3度)。即使斯皮策望远镜的视场比哈勃望远镜更宽,它也必须拍摄 11000 张快照,才能绘制出仙女座的全貌。
JPL 为位于华盛顿的美国宇航局科学任务局管理斯皮策太空望远镜任务,直到该任务于 2020 年 1 月退役。科学运作在加州理工学院的斯皮策科学中心进行。航天器的运行由位于科罗拉多州利特尔顿的洛克希德-马丁航天公司负责。数据存档在加州理工学院 IPAC 管理的红外科学档案馆。加州理工学院为美国国家航空航天局管理 JPL。
编译自/scitechdaily