代尔夫特理工大学的研究人员利用超导体成功控制了芯片上的自旋波,这可能会改变节能技术和量子计算的游戏规则。代尔夫特理工大学(Delft University of Technology)的量子物理学家首次证明,利用超导体在芯片上控制和操纵自旋波是可能的。
这些磁体中的微小自旋波可能在未来成为电子器件的替代品,对节能信息技术或量子计算机中的连接部件等很有意义。这一突破发表在《科学》杂志上,主要让物理学家对磁体和超导体之间的相互作用有了新的认识。
"自旋波是磁性材料中的波,我们可以利用它来传输信息,"领导这项实验的迈克尔-博斯特解释说。"由于自旋波可以成为替代电子产品的高能效构件,科学家们多年来一直在寻找控制和操纵自旋波的有效方法"。"
"早有预言金属电极可以控制自旋波,但直到现在,物理学家几乎还没有在实验中看到这种效果。"量子纳米科学系副教授 Toeno van der Sar 说:"我们研究团队的突破在于,我们证明了如果使用超导电极,确实可以正确控制自旋波。"
其工作原理如下:自旋波产生磁场,磁场又在超导体中产生超电流。超电流就像自旋波的一面镜子:超导电极将磁场反射回自旋波。超导镜面使自旋波上下移动的速度更慢,从而使自旋波易于控制。当自旋波经过超导电极时,它们的波长会完全改变,只要稍微改变电极的温度,我们就能非常精确地调节变化的幅度。
实验插图。图中显示了薄磁层上的两个金电极。中间是一个超导电极。研究人员用左边的金电极在磁性材料中产生自旋波,自旋波向右边传播。电极顶部是一个方形钻石膜,研究人员可以通过它看到超导电极。资料来源:代尔夫特理工大学 Michael Borst
"我们首先铺设了一层薄薄的钇铁石榴石(YIG)磁层,它被称为地球上最好的磁铁。我们在上面铺设了一个超导电极和另一个电极来诱导自旋波。通过冷却到零下 268 度,我们让电极进入了超导状态,"范德萨说。"令人惊奇的是,自旋波随着温度的降低变得越来越慢。这让我们有了操纵自旋波的独特方法;我们可以让自旋波偏转、反射、共振等等。但这也让我们对超导体的特性有了新的认识。"
研究人员钻石中的电子作为自旋波磁场的传感器,对自旋波进行成像,这对实验至关重要。它最酷的地方在于可以透过不透明的超导体观察下面的自旋波,就像核磁共振扫描仪可以透过皮肤观察人的身体一样。"
"自旋波技术仍处于起步阶段,"博斯特说。"例如,要利用这种技术制造高能效计算机,我们首先必须开始构建小型电路来执行计算。我们的发现打开了一扇门:超导电极可以实现无数新的高能效自旋波电路"。
范德萨补充说:"我们现在可以设计基于自旋波和超导体的设备,这些设备产生的热量和声波都很少。想想自旋电子学版的频率滤波器或谐振器吧,这些元件可以在手机的电子电路中找到。或者可以作为量子计算机中量子位之间的晶体管或连接器的电路。"