透镜是最常用的光学器件,例如相机镜头通过聚焦光线来生成清晰图像。近年来,光学技术的快速发展使传统笨重相机演变为如今的智能手机摄像头。然而,即使是高性能手机摄像头,仍依赖多层透镜堆叠,导致设备厚度增加。
为突破这一限制,科学家研发出了超构透镜(metalens)。这种平面透镜的厚度仅为头发丝的1/40,且无需玻璃材质,重量极轻。其核心在于由数百纳米级结构组成的超构表面,可精准调控光线传播方向,大幅缩小透镜尺寸。
结合特殊材料(如铌酸锂),这类纳米结构还能实现光的波长转换,例如将红外光变为可见光。绿色激光笔正是利用这一原理,通过晶体材料将红外光转化为绿光。铌酸锂因其优异的非线性光学特性,被广泛应用于光通信器件。
最近,瑞士联邦理工学院的研究团队开发了一种新型制备工艺,将化学合成与纳米加工结合,通过类似印刷的技术在液态前驱体中压印出纳米结构,再经高温处理形成功能性晶体。该方法成本低、效率高,适用于大规模生产。该研究成果发表于《先进材料》(Advanced Materials)期刊。
利用该技术,团队成功制造出兼具聚焦和波长转换功能的铌酸锂超构透镜。当800纳米红外光穿透透镜时,另一侧会输出400纳米的可见光,并精准聚焦。这种效应不依赖特定激光波长,应用潜力广泛,例如防伪标识、红外光探测,以及简化半导体制造中的深紫外光刻工艺。
超构表面技术作为新兴交叉学科,仍在快速发展中。研究人员表示,这种低成本、高性能的光学器件未来或将在多个领域产生深远影响。