麻省理工学院、麻省总医院拉贡研究所、麻省理工学院和哈佛大学的研究人员利用一种由 DNA 制成的类病毒递送颗粒,研制出了一种疫苗,它能诱导出针对 SARS-CoV-2 的强烈抗体反应。
这种疫苗已在小鼠身上进行了试验,它由一个 DNA 支架组成,支架上有许多病毒抗原的拷贝。这种疫苗被称为微粒疫苗,模仿病毒的结构。以前大多数微粒疫苗的研究工作都依赖于蛋白质支架,但这些疫苗中使用的蛋白质往往会产生不必要的免疫反应,从而分散免疫系统对目标的注意力。
在小鼠研究中,研究人员发现 DNA 支架不会诱发免疫反应,从而使免疫系统能够将抗体反应集中在目标抗原上。
麻省理工学院生物工程学教授马克-巴特(Mark Bathe)说:"我们在这项工作中发现,DNA 不会诱发抗体,以免分散对相关蛋白质的注意力。可以想象的是, B 细胞和免疫系统正在接受目标抗原的全面训练,而这正是你想要的--让免疫系统激光聚焦于感兴趣的抗原。"
研究人员说,这种能强烈刺激 B 细胞(产生抗体的细胞)的方法能让人们更容易开发出针对艾滋病、流感以及 SARS-CoV-2 等难以针对的病毒的疫苗。与受到其它类型疫苗刺激的 T 细胞不同,这些 B 细胞可以持续数十年,提供长期保护。
哈佛大学医学院副教授、拉贡研究所首席研究员丹尼尔-凌伍德说:"我们有兴趣探索是否能让免疫系统产生更高水平的免疫力,以抵御流感、艾滋病毒和SARS-CoV-2等传统疫苗方法所抵御的病原体。这种将针对目标抗原的反应与平台本身脱钩的想法是一种潜在的强大免疫学技巧,现在我们可以利用它来帮助这些免疫学靶向决策朝着更有针对性的方向发展"。
Bathe、Lingwood和哈佛大学医学院副教授、拉贡研究所首席研究员亚伦-施密特(Aaron Schmidt)是这篇论文的资深作者,论文今天(1月30日)发表在《自然-通讯》(Nature Communications)杂志上。论文的主要作者包括麻省理工学院前博士后艾克-克里斯蒂安-瓦姆霍夫、拉贡研究所博士后拉兰斯-隆萨、哈佛大学前研究生贾里德-费尔德曼、麻省理工学院研究生格兰特-克纳普和哈佛大学前研究生布莱克-豪瑟。
微粒疫苗通常由一种蛋白质纳米粒子组成,其结构与病毒相似,可携带许多病毒抗原拷贝。这种高密度的抗原能产生比传统疫苗更强的免疫反应,因为人体认为它与真正的病毒相似。目前已开发出针对乙型肝炎和人类乳头瘤病毒等少数病原体的微粒疫苗,而针对 SARS-CoV-2 的微粒疫苗也已获准在韩国使用。
这些疫苗尤其擅长激活 B 细胞,使其产生针对疫苗抗原的特异性抗体。Bathe说:"免疫学领域的许多人都对微粒疫苗非常感兴趣,因为它们能产生强大的体液免疫,也就是基于抗体的免疫,它有别于基于T细胞的免疫,而mRNA疫苗似乎能更强烈地激发T细胞免疫。"
不过,这种疫苗的一个潜在缺点是,用于支架的蛋白质通常会刺激人体产生针对支架的抗体。巴特说,这会分散免疫系统的注意力,使其无法如愿启动强有力的反应。
他说:"中和 SARS-CoV-2 病毒需要一种疫苗以产生针对病毒尖峰蛋白受体结合域部分的抗体。当在基于蛋白质的微粒上显示这种抗体时,免疫系统不仅能识别受体结合域蛋白质,还能识别与试图引起的免疫反应无关的所有其他蛋白质。"
另一个潜在的缺点是,如果同一个人接种了不止一种由相同蛋白支架携带的疫苗,例如接种了 SARS-CoV-2 疫苗,然后又接种了流感疫苗,那么他们的免疫系统很可能会立即对蛋白支架产生反应,因为他们已经做好了对蛋白支架产生反应的准备。这可能会削弱对第二种疫苗所含抗原的免疫反应。
Bathe说:"如果想应用这种基于蛋白质的微粒来免疫不同的病毒(如流感),那么免疫系统就会沉迷于它已经看到并产生免疫反应的底层蛋白质支架。这可能会降低机体对实际抗原的抗体反应质量。"
作为一种替代方法,Bathe 的实验室一直在开发使用 DNA 折纸制作的支架,这种方法可以精确控制合成 DNA 的结构,并允许研究人员在特定位置附着各种分子,如病毒抗原。
在2020 年的一项研究中,巴特和麻省理工学院生物工程及材料科学与工程教授达雷尔-欧文(Darrell Irvine)发现,携带 30 个艾滋病毒抗原拷贝的 DNA 支架可以在实验室培育的 B 细胞中产生强烈的抗体反应。这种结构是激活 B 细胞的最佳选择,因为它与纳米级病毒的结构非常相似,而纳米级病毒的表面会显示许多病毒蛋白的拷贝。
Lingwood说:"这种方法建立在B细胞抗原识别的基本原理基础之上,即如果对抗原进行阵列显示,就能促进B细胞的反应,提高抗体输出的数量和质量。"
在新的研究中,研究人员换用了由 SARS-CoV-2 原始菌株中尖峰蛋白的受体结合蛋白组成的抗原。在给小鼠注射疫苗时,他们发现小鼠对尖峰蛋白产生了高水平的抗体,但对DNA支架却没有产生任何抗体。
与此相反,以一种名为铁蛋白的支架蛋白为基础、涂有 SARS-CoV-2 抗原的疫苗产生了许多针对铁蛋白和 SARS-CoV-2 的抗体。
"DNA 纳米粒子本身没有免疫原性,"Lingwood 说。"使用基于蛋白质的平台会对平台和感兴趣的抗原产生同样高滴度的抗体反应,这会使重复使用该平台变得复杂,因为身体会对它产生高亲和力的免疫记忆"。
减少这些脱靶效应还有助于科学家们实现开发一种疫苗的目标,这种疫苗可以诱导针对任何变异的 SARS-CoV-2 甚至所有冠状病毒的广泛中和抗体,而冠状病毒是包括 SARS-CoV-2 以及导致 SARS 和 MERS 的病毒在内的病毒亚属。
为此,研究人员正在探索一种附有多种不同病毒抗原的 DNA 支架能否诱导出针对 SARS-CoV-2 和相关病毒的广泛中和抗体。
编译来源:ScitechDaily