研究人员发现了一种被称为"隐藏在大自然蓝图中"的关键酶的机制,揭示了细胞如何控制碳固定的关键过程,而碳固定是地球生命的基本过程。这一发现有助于设计出能够更有效地从大气中吸取二氧化碳的气候适应性作物,并在此过程中帮助生产更多的粮食。澳大利亚国立大学(ANU)和纽卡斯尔大学(UoN)的科学家们取得了这一突破。
5月10日发表在《科学进展》(Science Advances)杂志上的这项研究展示了一种名为羧基体碳酸酐酶(CsoSCA)的酶以前未知的功能,这种酶存在于蓝藻(又称蓝绿藻)中,能最大限度地提高微生物从大气中提取二氧化碳的能力。
蓝藻因其在湖泊和河流中的有毒繁殖而广为人知。但这些蓝绿色的细菌分布广泛,也生活在世界的海洋中。
虽然它们会对环境造成危害,但研究人员将它们形容为"微小的碳超级英雄"。通过光合作用,它们每年在捕捉全球约 12% 的二氧化碳方面发挥着重要作用。
蓝细菌是一组光合细菌,通常被称为"蓝藻",尽管它们是原核生物而不是真正的藻类。从海洋、淡水到裸岩,这些生物广泛存在于各种水生和陆地环境中。蓝藻以其进行含氧光合作用的能力而闻名,这意味着它们会产生氧气作为副产品,与植物类似。这一过程对地球上的生命至关重要,因为它为大气中氧气的产生做出了重要贡献。
第一作者、澳大利亚国立大学博士研究员萨沙-普尔斯福德(Sacha Pulsford)介绍了这些微生物捕获碳的惊人效率。
Pulsford女士说:"与植物不同,蓝藻有一个称为二氧化碳浓缩机制(CCM)的系统,它能固定大气中的碳并将其转化为糖,其速度明显快于标准植物和农作物物种。"
CCM 的核心是被称为羧基体的大型蛋白质区。这些结构负责封存二氧化碳,容纳 CsoSCA 和另一种叫做 Rubisco 的酶。
CsoSCA 和 Rubisco 两种酶协同工作,显示出 CCM 的高效特性。CsoSCA 的作用是在羧基体内产生局部高浓度的二氧化碳,然后 Rubisco 可以吞噬这些二氧化碳,并将其转化为糖分供细胞食用。
论文的主要作者、英国国立大学的本-朗博士说:"到目前为止,科学家们还不清楚CsoSCA酶是如何受控的。我们的研究重点是揭开这个谜团,尤其是在遍布全球的一个主要蓝藻群中。我们的发现完全出乎意料。CsoSCA酶随着另一种名为RuBP的分子的旋律起舞,RuBP像开关一样激活了它。把光合作用想象成做三明治。空气中的二氧化碳是馅料,但光合作用细胞需要提供面包。这就是 RuBP。"
"就像做三明治需要面包一样,二氧化碳转化为糖的速度取决于 RuBP 的供应速度。CsoSCA酶向Rubisco提供二氧化碳的速度取决于RuBP的含量。当RuBP足够多时,酶就会开启。但是,如果细胞中的 RuBP 用完了,酶就会关闭,从而使系统高度调整和高效。令人惊讶的是,CsoSCA酶一直蕴藏在大自然的蓝图中,等待着被发现"。
科学家们说,工程作物在捕获和利用二氧化碳方面的效率更高,这将大大提高作物产量,同时减少对氮肥和灌溉系统的需求,从而极大地促进农业发展,它还可以确保世界粮食系统更能适应气候变化。
Pulsford 女士说:"了解 CCM 的工作原理不仅能丰富我们对地球生物地球化学基本自然过程的认识,还能指导我们为世界面临的一些最大的环境挑战制定可持续的解决方案。"
编译来源:ScitechDaily