Google的Med-Gemini医疗人工智能模型被证明表现不输人类医生

摘要:

Google研究院和Google的人工智能研究实验室 DeepMind 详细介绍了 Med-Gemini(一个专门用于医学的高级人工智能模型系列)的惊人影响力。这是临床诊断领域的一大进步,具有巨大的现实潜力。

医生每天要治疗众多病人,他们的需求从简单到非常复杂。为了提供有效的医疗服务,他们必须熟悉每位患者的健康记录,了解最新的治疗程序和治疗方法。此外,建立在同理心、信任和沟通基础上的医患关系也至关重要。要想让人工智能接近真实世界中的医生,它必须能够做到所有这些。

Google的Gemini模型是新一代多模态人工智能模型,这意味着它们可以处理来自不同模态的信息,包括文本、图像、视频和音频。这些模型擅长语言和对话,理解它们所训练的各种信息,以及所谓的"长语境推理",即从大量数据(如数小时的视频或数十小时的音频)中进行推理。

Gemini医学模型具有Gemini基础模型的所有优点,但对其进行了微调。研究人员测试了这些以药物为重点的调整,并将结果写入了论文中。这篇论文长达 58 页,内容丰富,我们选取了其中最令人印象深刻的部分。

自我培训和网络搜索功能

要做出诊断并制定治疗方案,医生需要将自己的医学知识与大量其他相关信息结合起来:病人的症状、病史、手术史和社会史、化验结果和其他检查结果,以及病人对先前治疗的反应。治疗方法是"流动的盛宴",现有的治疗方法会不断更新,新的治疗方法也会不断推出。所有这些都会影响医生的临床推理。

因此,Google在 Med-Gemini 中加入了网络搜索功能,以实现更高级的临床推理。与许多以医学为重点的大型语言模型(LLM)一样,Med-Gemini 也是在 MedQA 上进行训练的,MedQA 是美国医学执照考试(USMLE)的多选题,旨在测试不同场景下的医学知识和推理能力。

hkzYge6c.jpg

Med-Gemini 如何使用自我培训和网络搜索工具

不过,Google也为他们的模型开发了两个新的数据集。第一个是 MedQA-R(推理),它通过合成生成的推理解释(称为"思维链",CoTs)对 MedQA 进行了扩展。第二种是 MedQA-RS(推理和搜索),它为模型提供使用网络搜索结果作为额外上下文的指令,以提高答案的准确性。如果一个医学问题的答案不确定,就会提示模型进行网络搜索,以获取更多信息来解决不确定问题。

Med-Gemini 在 14 个医学基准上进行了测试,并在 10 个基准上建立了新的最先进(SoTA)性能,在可以进行比较的每个基准上都超过了 GPT-4 模型系列。在 MedQA(USMLE)基准测试中,Med-Gemini 利用其不确定性指导搜索策略达到了 91.1% 的准确率,比Google之前的医学 LLMMed-PaLM 2 高出 4.5%。

在包括《新英格兰医学杂志》(NEJM)图像挑战(具有挑战性的临床病例图像,从 10 个病例中做出诊断)在内的 7 项多模态基准测试中,Med-Gemini 的表现优于 GPT-4,平均相对优势为 44.5%。

研究人员说:"虽然结果......很有希望,但还需要进一步开展大量研究。例如,我们还没有考虑将搜索结果限制在更具权威性的医学来源上,也没有考虑使用多模态搜索检索或对搜索结果的准确性和相关性以及引文的质量进行分析。此外,是否还能教会较小规模的法律硕士使用网络搜索还有待观察。我们将这些探索留待今后的工作中进行。"

从冗长的电子病历中检索特定信息

电子病历(EHR)可能很长,但医生需要了解其中包含的内容。更复杂的是,它们通常包含相似的文本("糖尿病"与"糖尿病肾病")、拼写错误、缩略词("Rx"与"prescription")和同义词("脑血管意外"与"中风"),这些都会给人工智能带来挑战。

为了测试Med-Gemini理解和推理长语境医疗信息的能力,研究人员使用一个大型公开数据库--重症监护医疗信息市场(MIMIC-III)--执行了一项所谓的"大海捞针任务",该数据库包含重症监护患者的去标识化健康数据。

该模型的目标是在电子病历("大海")中的大量临床记录中检索到与罕见而微妙的医疗状况、症状或程序("针")相关的内容。

共收集了 200 个案例,每个案例都由 44 名病史较长的重症监护室患者的去标识化电子病历记录组成。他们必须具备以下条件:

  • 100 多份医学笔记,每个例子的长度从 20 万字到 70 万字不等

  • 在每个例子中,条件只被提及一次

  • 每个样本都有一个感兴趣的条件

这项大海捞针的任务分为两个步骤。首先,Med-Gemini 必须从大量记录中检索所有与指定医疗问题相关的内容。其次,该模型必须评估所有提及内容的相关性,对其进行分类,并得出结论:患者是否有该问题的病史,同时为其决定提供清晰的推理。

74qfShrH.jpg

Med-Gemini 的长语境能力示例

与 SoTA 方法相比,Med-Gemini 在"大海捞针"任务中表现出色。它的精确度为 0.77,而 SoTA 方法为 0.85,召回率也超过了 SoTA 方法:0.76 对 0.73。

研究人员说:"也许 Med-Gemini 最引人注目的方面是长语境处理能力,因为它们为医疗人工智能系统开辟了新的性能前沿和新颖的、以前不可行的应用可能性。这项'大海捞针'式的检索任务反映了临床医生在现实世界中面临的挑战,Med-Gemini-M 1.5 的性能表明,它有潜力通过从海量患者数据中高效提取和分析信息,显著降低认知负荷,增强临床医生的能力。"

有关这些关键研究点的浅显易懂的讨论,以及Google和微软之间争论的最新情况,请观看《AI Explained》从 13:38 开始的视频。

新的 OpenAI 模型即将诞生,人工智能的赌注又提高了(还有 Med Gemini、GPT 2 聊天机器人和 Scale AI)

与 Med-Gemini 对话

在一次实际应用测试中,Med-Gemini 收到了一位患者用户关于皮肤肿块瘙痒的询问。在要求提供图像后,模型提出了适当的后续问题,并正确诊断出了这种罕见的病变,同时建议用户下一步该怎么做。

spTx_C2H.jpg

Med-Gemini 诊断对话在皮肤科的应用实例

Med-Gemini 还被要求在医生等待放射科医生的正式报告期间,为其解读胸部 X 光片,并编写一份通俗易懂的英文版报告提供给病人。

-Eteml8a.jpg

Med-Gemini 的放射诊断对话辅助系统

研究人员说:"Med-Gemini-M 1.5 的多模态对话功能很有前景,因为它们无需进行任何特定的医疗对话微调即可实现。这些功能可以实现人、临床医生和人工智能系统之间无缝、自然的互动。"

不过,研究人员认为还需要进一步的工作。他们说:"这种能力在帮助临床医生和患者等现实世界应用方面具有巨大潜力,但当然也会带来非常大的风险。在强调这一领域未来研究潜力的同时,我们并没有在这项工作中对临床对话的能力进行严格的基准测试,正如其他人之前在对话诊断人工智能的专门研究中所探索的那样。"

未来愿景

研究人员承认,要做的工作还有很多,但 Med-Gemini 模型的初步能力无疑是很有希望的。重要的是,他们计划在整个模型开发过程中纳入负责任的人工智能原则,包括隐私和公平。

隐私方面的考虑尤其需要植根于现有的医疗保健政策和法规,以管理和保护患者信息。公平性是另一个可能需要关注的领域,因为医疗保健领域的人工智能系统有可能无意中反映或放大历史偏见和不公平,从而可能导致边缘化群体的不同模型性能和有害结果。但归根结底,Med-Gemini 被视为一种造福人类的工具。

大型多模态语言模型为健康和医学带来了一个全新的时代。Gemini"和"医学Gemini"所展示的能力表明,在加速生物医学发现、协助医疗保健服务和体验的深度和广度方面,都有了重大飞跃。然而,在提高模型能力的同时,必须对这些系统的可靠性和安全性给予细致的关注。通过优先考虑这两个方面,我们可以负责任地展望未来,让人工智能系统的能力成为科学进步和医疗保健有意义且安全的加速器。

该研究可通过预印本网站arXiv 获取。

查看评论
created by ceallan